Challenges and Opportunities for Students Who Are Gifted: What the Experts Say

Steven I. Pfeiffer
Duke University

Abstract

Five questions were answered by 64 authorities in the gifted field: (a) What do you see as the three greatest identification, assessment, and/or definitional issues in the gifted field? (b) What do you see as the three greatest curricula, instruction, and/or program issues for the gifted student? (c) What are the three most pressing unanswered questions in the gifted field? (d) What have been the three most important research findings in the last 5 years in the gifted field? (e) What are the three most significant developments or innovations in gifted education in the last 5 years? Responses were coded and sorted according to an analytic strategy that permitted the descriptive data to be grouped into a small number of categories. Most frequent categories included a need for consensus on how to define, conceptualize, and identify giftedness; new procedures to increase the under-representation of gifted minority students; and the importance of translating research on educational innovations into practice. Research and practice implications for the gifted field are provided.

The gifted field, like the fields of special education and child psychiatry, is experiencing rapid change. These changes are influenced by dramatic ideological, political, economic, and cultural shifts and by recent technological advances (Feldhusen, 1998; Gallagher, 1998; Landrum, Katsiyannis, & DeWaard, 1998; Pfeiffer & Reddy, 1998; Sternberg, 1996; VanTassel-Baska, 1998). For example, a shift in the intellectual and cultural zeitgeist has made gifted education more vulnerable to challenges from regular education and the inclusion movement (Pfeiffer, 1999; Sternberg, 1999) and has raised troubling questions about the need for special programs (Oakes, 1985; Stephens & Karnes, 2000) and the value of ability grouping (Cox, Daniel, & Boston, 1985; Margolin, 1994; Sapon-Shevin, 1994).

Although many leaders in U.S. society recognize that gifted children are among our most precious natural resources (Sternberg, 1997), the gifted field has been under virulent attack for almost two decades since its ascendancy in the 1960s and 1970s (Borland, 1996; Feldhusen, 1998). Gallagher (1998) aptly described the present state of gifted education as in a “quiet crisis.”

My colleagues and I at the Duke University Talent Identification Program solicited the views of experts in the gifted field to provide an informed perspective on where the field might be heading, especially with respect to recent and emerging concerns and trends in gifted education. A group of experts was invited to answer five questions: (a) What do you see as the three greatest identification, assessment, and/or definitional issues in the gifted field? (b) What do you see as the three greatest curricula, instruction, and/or program issues for the gifted student? (c) What are the three most pressing unanswered questions in the gifted field? (d) What have been the three most important research findings in the last 5 years in the gifted field? and (e)

Putting the Research to Use

The results of this survey suggest at least three implications for educators. First, definitional and identification issues remain thorny problems that need to be resolved. The leaders of the field may want to develop a best practices white paper that encourages the use of scientifically defensible identification packages that incorporate multiple perspectives and multiple informants. Second, we need to better translate and more effectively “give away” what we know about promoting talent development so that, at the local level, teachers of the gifted can fully benefit from cutting edge curricular and instructional technologies. Third, we need to build a more compelling case for the value of supporting one of America’s most precious resources—its gifted children.
What are the three most significant developments or innovations in gifted education in the last 5 years?

Method

Participants

A multiple sampling strategy was used to ensure a representative group of experts in the gifted field. Several groups of scholars, educators, and researchers, including (a) officers and members of the board of directors of the National Association of Gifted Children, (b) current editorial board members of five distinguished professional journals in the gifted field (Gifted Child Quarterly, Gifted and Talented International, Journal of Creative Behavior, Journal for the Education of the Gifted, and Roeper Review), and (c) first authors of three or more journal articles in the gifted field published from 1994 through 1998, were invited to participate in the study. Multiple computer literature searches in PsycLit and ERIC were conducted to generate the list of authors. To ensure a representative group of experts, the list of authors was then crosschecked against every article appearing during the 5-year period in the journals mentioned above and with author listings in the subject index of a widely cited text edited by Colangelo and Davis (1997).

One hundred and forty-two distinguished scholars, researchers, and educators in the gifted field were identified via the above methods and invited to participate in the study. Each expert received an explanation of the study, an invitation to participate, and a survey. The experts were offered the option, if they preferred, of responding by e-mail. For e-mail responses, experts were asked to submit a copy of their curriculum vitae under separate cover to ensure the anonymity of their responses. Surveys and e-mail responses were collected for an 8-week period before transcription and tabulation of responses were done to permit ample time for the experts to reply. Two surveys were returned unopened because of an incorrect address, and three were returned with the identified individuals stating that they did not view themselves as an expert. Of the remaining group of 137 experts, 64 surveys were completed and returned, yielding a response rate of 46%.

It is important to note that the group of 137 experts was not a sample. Rather, the group constituted a population of authorities in the gifted field based on our operational definition of “expert” and carefully articulated inclusive criteria. The subgroup of experts who agreed to participate—almost 50% of the total population of internationally renowned experts in the gifted field—represented 21 states and four countries outside of the United States. The majority of the sample was female (72%) and 100% held Ph.D.s. They averaged almost 21 years experience in the field, and all were affiliated with universities. The average number of publications per expert in this cohort was 3.7 books and 31.6 articles/book chapters, attesting to the distinguished caliber of the group.

Survey Instrument

The survey was designed after reviewing the extant gifted literature. The format was modeled after previous survey research conducted with experts in the fields of autism, child mental health, and mental retardation (Pfeiffer, 1992; Pfeiffer & Nelson, 1992) and used open-ended questions. Although it is recognized that this format is more demanding and time-consuming than a checklist or rating scale and can compromise response rate, a simple checklist restricts the depth and thoughtfulness of responses that we hoped to elicit from our group of experts (Dillman, 1978). The survey was piloted with three noted authorities in the gifted and talented field. Based on their input and feedback, three questions were revised or eliminated, resulting in the final five-item survey.

Procedure

Each response to the five questions was typed on individual file cards and color-coded based on the corresponding question. On the back of each card was an identification code ranging from 1 to 64 to identify which expert generated the response. The cards were then independently coded by two psychology graduate students unfamiliar with the purpose of the study according to a standard ethnographic, analytic strategy (Dillman, 1978). The analytic procedure permits descriptive data to be reliably quantified: Each response is sorted into provisional categories and then a repetitive comparison process by the raters refines the rules that describe category properties, justifies inclusion for each statement, and ensures that the category sets are internally consistent (Lincoln & Guba, 1985). The two raters went through three separate sortings of responses before agreeing on the final set of categories. The two raters agreed on 92% of the final categories, suggesting adequate overall agreement. A consensus was reached in those few cases, in consultation with the primary investigator, when disagreements in coding occurred.

For each of the five questions, the resulting categories were ranked ordered in terms of the number of experts who
provided at least one response for that category. The survey permitted up to three responses per question; however, many experts provided less than three responses for a given question. Theoretically, with 64 experts, a given question through the analytic sorting process could generate one single category consisting of 192 related responses or as many as 192 unrelated categories. In no case did the sorting process lead to an approximation of either of these extreme possibilities.

A simple statistic, called in this study “endorsement percentage,” was calculated to ease interpretation of the rank ordering of categories. Endorsement percentage consisted of the percentage of experts who provided at least one response that was subsequently grouped within a given category. It was theoretically possible for experts to provide two or even three responses that could be sorted together within a given single category. For example, Question 1: Identification, Assessment, and/or Definitional Issues generated 176 responses by the 64 experts. One hundred and forty-four of the 176 responses (82%) to Question 1 accounted for the top five ranked categories. Sixty of the 64 experts (94%) provided at least one response to Question 1 that were grouped within the most frequently cited category, Lack of Consensus on How to Conceptualize or Define the Gifted and Talented.

Results

Question 1: What Are the Greatest Identification, Assessment, and/or Definitional Issues in the Gifted Field?

As mentioned above, 144 of the 176 responses (82%) provided by the group of experts to Question 1 accounted for five of the nine categories that were generated. See Table 1 for a summary of the most frequent categories by question. We labeled the category in which the greatest number of experts provided at least one response to Question 1 (endorsement percentage) as Lack of Consensus on How to Conceptualize or Define the Gifted and Talented. This category was endorsed by 60 of the 64 experts (94%) as being among the three greatest identification issues in the field. Illustrative responses within this category included a lack of a nationally agreed upon definition; vague terminology inconsistently applied across states; imprecision in the use of the term gifted; confusion over whether we are talking about potential or actual productivity; uncertainty about whether creativity is a component of giftedness; and a lack of empirical support for the concept of multiple intelligences.

The second most frequently endorsed category, with 26 of the 64 experts providing at least one response (41%), was labeled Problems With the Identification Process. Responses illustrative of this category included a lack of multiple criteria for identification; the high number of false negatives (students who are gifted, but don’t meet cut-off scores); not recognizing gifted children with poor test-taking skills; and a failure to include specific talents such as the visual arts, dance, and music of highly capable youth.

Two categories each had 19 of the 64 experts providing at least one response endorsing them (30%), namely Questionable Validity of Existing Instruments and Underrepresentation of Minority Group Students. Experts voiced concern with the lack of predictive validity of frequently used measures, the questionable reliability and construct validity for most tests, and the growing acceptance of nonstandardized classroom-based portfolio procedures of questionable psychometric merit. Experts also suggested that typically used measures do not work as well with culturally diverse populations, students from low socioeconomic status (SES) or rural areas, and students in which English is not the primary language spoken in the home.

The category rank-ordered fifth, with 18 of the 64 experts providing responses (28%), was labeled Lack of Educational Utility. The group of experts highlighted two issues: current identification systems are rarely linked to curricula and identification is emphasized to the relative neglect of designing programming options.

Four additional categories completed Question 1. None of the categories, however, were endorsed by more than 10 of the 64 experts. These four groups were labeled Lack of Professional Training (16%), Problems With the IQ Test (16%), Weak State and National Policy Identification Regulations and Procedures (12%), and Unintended or Iatrogenic Negative Effects of Testing (6%).

Question 2: What Are the Greatest Curricula and Instruction Issues Facing the Gifted Student?

Similar to our findings for the first question, five broad categories accounted for the majority of the 180 independent responses to Question 2 (92%). The category in which the greatest number of experts provided at least one response was Lack of Curricula Breadth, Depth, and Specificity (54 of the experts; 84%). Illustrative responses included the need for more acceleration, compacting, and differentiation; the problem of a “one-size-fits-all” mentality; instruction aimed primarily at middle levels of achievement; the lack of mentor programs; weak enrich-
Table 1
Most Frequent Categories by Question

<table>
<thead>
<tr>
<th>Question 1: Identification, assessment and/or definitional issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lack of Consensus on How to Conceptualize or Define the Gifted and Talented (94%)</td>
</tr>
<tr>
<td>• Problems With the Identification Process (41%)</td>
</tr>
<tr>
<td>• Questionable Validity of Existing Instruments (30%)</td>
</tr>
<tr>
<td>• Underrepresentation of Minority Group Students (30%)</td>
</tr>
<tr>
<td>• Lack of Educational Utility (28%)</td>
</tr>
<tr>
<td>• Lack of Professional Training (16%)</td>
</tr>
<tr>
<td>• Problems With the IQ Test (16%)</td>
</tr>
<tr>
<td>• Weak State and National Policy Identification Regulations and Procedures (12%)</td>
</tr>
<tr>
<td>• Unintended Iatrogenic or Negative Effects of Testing (6%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 2: Curricula, instruction and/or program issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lack of Curricula Breadth, Depth, and Specificity (84%)</td>
</tr>
<tr>
<td>• Limited Curricular Options (44%)</td>
</tr>
<tr>
<td>• Lack of Professionalism (38%)</td>
</tr>
<tr>
<td>• Insufficient Public Policy (31%)</td>
</tr>
<tr>
<td>• Need to Translate Research into Practice (28%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 3: Most pressing unanswered questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Educational Questions (63%)</td>
</tr>
<tr>
<td>• How to Promote Talent (28%)</td>
</tr>
<tr>
<td>• How to Improve Assessment (28%)</td>
</tr>
<tr>
<td>• How to Increase the Number of Typically Underrepresented Groups of Gifted Students (25%)</td>
</tr>
<tr>
<td>• Reversing Academic Underachievement (19%)</td>
</tr>
<tr>
<td>• Better Understanding the Nature and Uniqueness of Giftedness (19%)</td>
</tr>
<tr>
<td>• Impacting Public Policy (19%)</td>
</tr>
<tr>
<td>• Better Understanding Intelligence and Creativity (16%)</td>
</tr>
<tr>
<td>• Professional Concerns (16%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 4: Most important research findings in the last 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Educational Innovations (75%)</td>
</tr>
<tr>
<td>• Identifying the Characteristics of the Gifted (34%)</td>
</tr>
<tr>
<td>• Understanding Talent Development (28%)</td>
</tr>
<tr>
<td>• Neuroscience and Human Intelligence (19%)</td>
</tr>
<tr>
<td>• Gender Differences (16%)</td>
</tr>
<tr>
<td>• Creativity (13%)</td>
</tr>
<tr>
<td>• Professional Preparation (13%)</td>
</tr>
<tr>
<td>• New Identification Procedures (13%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 5: Most significant developments or innovations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Enhanced Learning Opportunities (56%)</td>
</tr>
<tr>
<td>• New Views of Giftedness and Human Potential (50%)</td>
</tr>
<tr>
<td>• Meeting the Needs of Typically Underrepresented Groups (22%)</td>
</tr>
<tr>
<td>• Improved identification Procedures (22%)</td>
</tr>
<tr>
<td>• Collaboration With Regular Education (19%)</td>
</tr>
<tr>
<td>• Applied Research and Technology (19%)</td>
</tr>
</tbody>
</table>

Note. Percent of the experts (n = 64) who provided at least one response that was grouped within each category.
What are K schools? What is the role of mentoring? How to Promote Talent (28%) and How to Improve Assessment (28%) both received endorsement by 18 of the 64 experts. The experts felt that the field still lacked a sophisticated understanding of how to best nurture human talent and asked the following questions: What factors support or interfere with talent development? At what point does the prodigy become creative and productive? Is motivation context-specific within certain artistic areas? What role does external motivation play? The authorities also noted the need to improve the reliability and validity of identification procedures and questioned whether instruments could be developed to recognize the early spark of embryonic genius and if algebraic equations that combine various diagnostic indicators might improve identification accuracy.

The category How to Increase the Number of Typically Underrepresented Groups of Gifted Students was endorsed by 16 of the experts (25%). The experts were concerned that a disproportionate number of potentially gifted children of color, economic disadvantage, or both and children who are female, linguistically different, handicapped, or from rural communities were not being adequately served.

Three other groupings emerged from the responses provided by 12 of the 64 experts (19%). These categories were labeled Reversing Academic Underachievement, Better Understanding the Nature and Uniqueness of Giftedness, and Impacting Public Policy.

Rounding out Question 3 were responses that were sorted into two final categories. The category Better Understanding Intelligence and Creativity (16%) included responses about how the concept of multiple intelligences correlates with gifted education and the relationship between g and specific talents. The category Professional Concerns (16%) included responses about whether the gifted field interfaces with the related fields of biology, neurology, and developmental psychology; how teachers can be better prepared to meet the needs of gifted students; and how the perceived and perhaps actual elitism of the field could be addressed.

The categories How to Promote Talent (28%) and How to Improve Assessment (28%) both received endorsement by 18 of the 64 experts. The experts felt that the field still lacked a sophisticated understanding of how to best nurture human talent and asked the following questions: What factors support or interfere with talent development? At what point does the prodigy become creative and productive? Is motivation context-specific within certain artistic areas? What role does external motivation play? The authorities also noted the need to improve the reliability and validity of identification procedures and questioned whether instruments could be developed to recognize the early spark of embryonic genius and if algebraic equations that combine various diagnostic indicators might improve identification accuracy.

The category How to Increase the Number of Typically Underrepresented Groups of Gifted Students was endorsed by 16 of the experts (25%). The experts were concerned that a disproportionate number of potentially gifted children of color, economic disadvantage, or both and children who are female, linguistically different, handicapped, or from rural communities were not being adequately served.

Three other groupings emerged from the responses provided by 12 of the 64 experts (19%). These categories were labeled Reversing Academic Underachievement, Better Understanding the Nature and Uniqueness of Giftedness, and Impacting Public Policy.

Rounding out Question 3 were responses that were sorted into two final categories. The category Better Understanding Intelligence and Creativity (16%) included responses about how the concept of multiple intelligences correlates with gifted education and the relationship between g and specific talents. The category Professional Concerns (16%) included responses about whether the gifted field interfaces with the related fields of biology, neurology, and developmental psychology; how teachers can be better prepared to meet the needs of gifted students; and how the perceived and perhaps actual elitism of the field could be addressed.

Question 4: What Have Been the Most Important Research Findings in the Last 5 Years in the Gifted Field?

Five categories accounted for 110 of the 134 responses to Question 4 (82%). Forty-eight of the 64 experts provided at least one response that was sorted into a category labeled Educational Innovations. Seventy-five percent of the experts agreed that at least one of the three most important research findings in the last 5 years reflected an educa-
tional innovation. Illustrative responses included the importance of differentiation in the regular classroom, the benefits of homogeneous ability grouping, the positive relationship between acceleration and achievement, findings about the negative uses of cooperative learning, and the value of inquiry-driven curricula.

Twenty-two of the experts (34%) provided responses indicating that Identifying the Characteristics of the Gifted was an important area of research inquiry. Responses to this category included research findings about the greater stability of math precocity when compared to verbal-linguistic skills, the demonstration of developmental asynchronies with out-of-level testing, the relationship between academic precocity and vocational preferences, and the high stimulation level present in the homes of gifted children.

The next most frequently cited category of research findings was Understanding Talent Development (18 experts; 28%). A number of experts cited research for this category on issues such as elucidating the impact of early experience, the importance of the environment and family to talent development, the complexity of developmental processes, and the full expression of talent necessitating sustained inquiry over an extended period of time.

Twelve of the 64 experts offered responses that cited significant research findings associated with the category Neuroscience and Human Intelligence (19%). Experts identified research issues such as reanalyzing earlier factor analytic studies of intelligence, the work of Gardner (1983) and Sternberg (1997) on multiple intelligences, and recent brain-behavior research enabled by magnetic resonance scanning and other advanced techniques. Roundout the research categories were significant findings associated with the categories Gender Differences (16%), Creativity (13%), Professional Preparation (13%), and New Identification Procedures (13%).

A handful of the 64 experts commented that the past 5 years have been marked by no significant research, but that advances in the field have resulted from philosophical shifts. We will return to this point later.

Question 5: What Are the Most Significant Developments or Innovations in the Gifted Field in the Last 5 Years?

Our group of experts offered a large number of responses to this final question (154 responses on educational programs, approaches, and enhancements). One hundred thirty-two of the 154 responses comprised six categories (86% of the responses). More than half of the experts (56%) provided at least one response that reflected the category Enhanced Learning Opportunities as being among the most significant developments or innovations in the gifted field. Responses reflected developments such as curricular differentiation strategies, problem-based learning, increased content-academic rigor, and a wider range of supplemental programs (e.g., summer and Saturday programs and the curriculum units from the College of William and Mary).

Thirty-two of the 64 experts (50%) generated responses that fell into the category New Views of Giftedness and Human Potential. This category included the concept of multiple intelligences, an expanded understanding of the range of human abilities, increased interest in the arts, and a focus on talent development, rather than gifted education.

The final four categories were each represented by less than 25% of the experts. They were labeled Meeting the Needs of Typically Underrepresented Groups (14; 22%), Improved Identification Procedures (22%), Collaboration With Regular Education (19%), and Applied Research and Technology (19%).

Discussion

Validity of the Group of Experts

A rigorous selection procedure and extensive sampling strategy was used to ensure that a distinguished, knowledgeable, and representative group of experts in the gifted and talented field was identified to participate in this study. The geographic representation of our group and favorable response rate—almost half of a population of international authorities in the gifted field—enhances the generalizability of our findings. The extensive experience and impressive productivity of the group of experts attests to the distinguished caliber of the sample.

One limitation of the study is that, by virtue of the criteria employed to define an expert, the sample consisted exclusively of university-based academicians and researchers. Although many of the participants listed considerable field-based experience on their curriculum vitae, the views of full-time teachers, consultants, and educational administrators were not included in this survey. It would be interesting to conduct a parallel survey with a group of authorities in the gifted field defined by experience, rather than by the number of publications, offices held in a national association, or journal editorial board membership.

Implications for the Field

This type of investigation, in which open-ended opinions from a distinguished group of experts are
solicited, will by its very nature generate a tremendous amount of ideas and perspectives. Four implications are offered that represent a consensus on the primary challenges and opportunities facing the gifted field.

How to conceptualize and define giftedness. It is apparent that definitional issues remain a thorny problem. While most state regulations and school policies reflect a derivation of the fairly broad 1972 definition offered by the U.S. Office of Education, in practice at the local level, above-average intellectual ability remains the predominant definitional criteria (Callahan, 1996). The newest federal definition promulgated in the 1994 U.S. Department of Education report, *National Excellence: A Case for Developing America’s Talent*, eliminated the term gifted and advocated for the exclusive use of the phrase “outstanding talent” (Stephens & Karnes, 2000).

The field has not resolved two competing perspectives on how to conceptualize giftedness. One view argues that children with outstanding potential ability should be considered gifted; another view contends that demonstrated productivity should be the hallmark of giftedness. A special issue of the *Journal for the Education of the Gifted* (1999) [Vol. 22, No. 2] presents a valuable and much-needed dialogue on divergent perspectives about the nature of exceptional abilities, gifts, and talents. In the real world of the classroom, practitioners implicitly embrace different theories of giftedness, oftentimes without carefully considering the explicit philosophical, societal, and practical implications of the particular model. For example, Terman’s (1925) psychometric theory of high intelligence, Tannenbaum’s (1983) five-factor predictive model, Renzulli’s (1978) three-ring conception of giftedness, and Piirto’s (1994) pyramid model of talent development suggest quite different approaches to how practitioners identify and promote exceptional talent. There has been no research comparing the utility of one model over the other. In the long run, it may be less important to resolve these divergent viewpoints than to clarify and elaborate the value of each position.

I recently proposed a developmental-differentiated model for gifted classification, program eligibility, and talent development patterned after the U.S. Olympic Development Program model of youth soccer talent development (Pfeiffer, in press a, b). Educators should be most concerned with not excluding any possibly gifted young students with outstanding promise. At the Duke Talent Identification Program (TIP), elementary school children are now eligible for program participation when they score at the 90th percentile or above on a grade-level standardized achievement or IQ test. The standard becomes more rigorous at Duke TIP when students reach middle school. Middle school students with scores at or above the 95th percentile are eligible for a variety of programs and resources. Differentiation occurs at this age; seventh graders who score approximately within the top 1% of their age group on the SAT or ACT are eligible to apply to attend Duke TIP’s highly accelerated summer educational programs.

Whatever the ultimate resolution as to how the field conceptualizes giftedness, it will be critically important to translate sound research into best practice, ensuring that limited resources are applied in the best and most equitable manner.

How to improve the identification process. As noted above, most states still use the singular criteria of above-average intelligence to identify gifted students (Callahan, 1996), although Gallagher (1998) has reiterated the view that traditional measures rarely help in assessing academically precocious students. Many gifted youngsters score at the top of existing age-normed tests, masking or underestimating their mastery of material or true potential.

The challenge is to move away from reliance on a single instrument or measure. The gifted field needs to develop reliable and valid “identification packages” that incorporate multiple perspectives and multiple informants. These measures need to be sensitive to socio-cultural and linguistic differences and grounded in a well-articulated theory of giftedness (e.g., Carroll’s theory of human cognitive abilities, 1993; Gagné’s theory of gifts and talents, 1999; Gardner’s multiple intelligences, 1983; or Sternberg’s triarchic theory, 1997).

Researchers are beginning to develop innovative identification procedures grounded in solid theory. For example, Sarouphim (1999) described a promising assessment procedure specifically developed to identify typically underrepresented gifted minority group children. This procedure is based on Howard Gardner’s theory of multiple intelligences.

Based on the ongoing and still unresolved diagnostic and identification issues in the fields of special education and child psychiatry, it is unlikely that, at least in the near future, the gifted field will develop one “best” identification approach (Pfeiffer & Reddy, 1998). That is not necessarily problematic. What the gifted field does need, rather, are alternative, thoughtfully conceived, and scientifically defensible identification procedures. For example, a colleague and I recently developed a new teacher-completed identification instrument, the Pfeiffer-Jarosewich Gifted Rating Scales, which will be published by The Psychological Corporation in conjunction with the new Wechsler scales (Pfeiffer & Jarosewich, in press).

How to promote talent. The experts highlight the need to translate research into practice so that educators are
exposed to the best and most efficacious work on curricu-
ula and instructional methodologies. The gifted learner is
best served by a curriculum that allows for both acceler-
ated and highly enriched learning, emphasizes advanced
content knowledge, and provides for active learning,
higher order thinking and problem solving, interdiscipli-
ary connection, and significant, real-world outcomes
(VanTassel-Baska, 1998).

However, the design and implementation of such a
quality curriculum remains a challenge for regular educa-
tors and resource teachers of the gifted. It is apparent that
the curriculum must be modified to accommodate the
unique learning needs of the gifted learner (Renzulli,
1978; Renzulli & Reis, 1994; Sternberg, 1999), but it is
unclear exactly how to customize the curriculum to opti-
mize the learning experience of the gifted student while
not adversely impacting upon the regular curriculum.

The field is rife with complex and confusing issues
that impact on instruction and learning. A few of these
issues include ability grouping/tracking (Cox, Daniel, &
Boston, 1985; Oakes, 1985; Renzulli, 1978); differentia-
tion (Gallagher, 1994); female talent development (Noble,
Subotnik, & Arnold, 1999); inclusion (Pfeiffer & Reddy,
2000); and asynchronous development and emotional risk
factors (Neihart, 1999; Pfeiffer, in press; b; Pfeiffer &
Stocking, 2000). Recent classroom studies indicate that
little differentiation is occurring in heterogeneous class-
rooms for gifted students (Archambault et al., 1993) and
that the majority of regular education teachers are mini-
mally prepared to teach gifted learners (Westberg,
Archambault, Dobyns, & Salvin, 1993; Westberg, Burns,
et al., 1998).

Perhaps the field would benefit from bringing
together a panel of noted authorities on talent develop-
ment with the charge of preparing a consensus paper that
would ultimately be disseminated to practitioners nation-
wide. Experts in cognitive psychology, curricula, develop-
mental psychology, gifted education, and human learning
could synthesize the diverse research and make sense of
what strikes most practitioners as a confusing state of
affairs in terms of talent development.

Public policy issues. Finally, our experts agree that pub-
lic opinion is not at a zenith and the gifted education field
is vulnerable to challenges from within regular education
and society (Borland, 1996; Colangelo & Davis, 1997).
The funding provided by Congress and state agencies for
the gifted is considerably less than monies earmarked for
other groups of special-needs students with the same
prevalence rates. For example, Sternberg (1996) reported
that nationally less than 1% of special education funding
goes to the gifted. In our home state of North Carolina,
4% of special education money is earmarked for the gifted
and talented (D. Mills, personal communication, December 21, 1999).

At the same time, the gifted field has many notable
accomplishments that are beginning to be adopted across
all of education (Callahan, 1996). A short list of some of
the innovative achievements sparked by the gifted field
include individualized programming, mentorships, port-
folio assessment, leadership training, greater attention
to creative learning, and promoting a climate of excellence
and high levels of academic rigor.

What the field lacks is a unified, proactive, and nonde-
defensive position that would project a persuasively positive
image to the public. Funding for special programs is always
a political contest fought over limited resources. The gifted
field needs to better articulate to the public who gifted stu-
dents are, why they are a special-needs population, and
what the benefits to society are when their special abilities
are nurtured (and the cost to society when they are left
unattended). This last issue has little to do with science and
educational accountability. Rather, it speaks to the heart of
what society values when considering one of its most
important natural resources—America’s gifted youth.

References

Archambault, F. X., Westberg, K. L., Brown, S., Hallmark, B. W.,
Zhang, W., & Emmons, C. (1993). Regular classroom prac-
tices with gifted students: Findings from the classroom prac-

Borland, J. H. (1996). Gifted education and the threat of irrele-

Callahan, C. M. (1996). A critical self-study of gifted education:
Healthy practice, necessary evil, or sedition? Journal for the
Education of the Gifted, 19, 148–163.

Cambridge University Press.

Austin: University of Texas Press.

Dillman, D. A. (1978). Mail and telephone surveys: The total design

Feldhusen, J. (1998). Programs for the gifted few or talent devel-

Gagné, F. (1999). My convictions about the nature of abilities,
gifts, and talents. Journal for the Education of the Gifted, 22,
109–136.

Gallagher, J. J. (1994). Current and historical thinking on educa-
tion for gifted and talented students. In P. Ross (Ed.),

Author Note

This work was fully supported by the Duke University Talent Identification Program (TIP).

The author gratefully acknowledges the contributions of John Feldhusen, Frances Karnes, and Joseph Renzulli in providing feedback to an earlier version of the survey instrument and to Joy Baldwin, Bobbie Collins-Perry, Judy Hammes, Jacqui Morris, Vicki Stocking, and Julie Worley for assistance in data collection, analysis, and editing. Correspondence regarding this manuscript can be directed to the author at the Duke University Talent Identification Program, 1121 W. Main St., Ste. 100, Durham, NC 27701.